# AUTOHATIC PROCESS CONTROL IN A GENERAL MARROVIAN SET UP 

by
A. Sarkar

Indian Institute of Technology
Kharagpur-721302, India


#### Abstract

In autonatic process control, it is sonetines realistic to assure that the assignable variation affecting the operating level of the process at every epoch depends on the current value of the process. In such situations, the conditions for syster stability are investigated, when a 'tro-sided controller' is used. An algorithm is provided here to obtain the steady state distribution of the observations of the process. Three numerical illustrations are also presented.


Keywords: process control, two-sided controller, Markov chains.

## 1. Introduction

We have shown in an earlier work (Sarkar, and Bhattacharji, 1986) that a two-sided controller with a properly chosen parameter stabilises a high speed production process subject to a specific type of assignable variation. It is assumed there that the amount of shift from the current value of the process operating level (Process mean) produced by assignable causes follow a Normal distribution with mean zero and a known variance, irrespective of the current value of the process.

In the present paper, we consider a more general type of assignable variation which follows a probability law dependent on some suitable function of the current value of the process mean. The conditions under which a 'two-sided
controller' induces stability into the process in such a situation are investigated here. A method, along with an algorithm, for evaluating the steady state distribution of the observations is outlined. The analysis provides an insight into the behavior of the process so that the implementation of such a control device can be carried out easily.
2. The process model and the probability laws of the random variables.

The control device and the process model considered here are formally identical to those of the earlier work (Sarkar and Bhattacharji, 1986). Thus we suppose that assignable causes shift the level of the process mean $y_{n}$ at every epoch $n$, by a random amount $a_{n}$, independently of time. The control device gets activated and shifts $y_{n}$, by a random amount $s_{n}$ only when the observation $x_{n}$ at epoch $n$ goes beyond given lower and upper control limits $C_{*}$ and $C^{*}$ respectively. So long as observations on the process remain within the two control limits no action is taken. Denoting the random variables corresponding to $x_{n}, Y_{n}, a_{n}$ and $s_{n}$ by the corresponding capital letters the process model, therefore, takes the following form

$$
\begin{align*}
& x_{n}=Y_{n}+\epsilon_{n} \\
& Y_{n}=Y_{n-1}+A_{n-1}+S_{n-1} \quad, \quad n \geq 1 \tag{2.1}
\end{align*}
$$

with initial value $Y_{0}=0$, and $E[\epsilon n]=0$. It is assumed without much loss of generality that the random variables $Y_{n}, A n$ and $S n$ take discrete values $0, \pm 1, \pm 2, \ldots$

It is assumed that the probability law on $x_{n}$, when the process mean has a value $Y_{n}$ is $N\left(Y_{n}, \sigma^{2}\right)$, and that of $S n$ for every epoch $n$, is

$$
\begin{align*}
\Psi_{S}\left(S \mid Y_{n}\right)= & G_{S}\left(S \mid C_{*}\right) F_{C^{*}}\left(Y_{n}\right)+G_{S}\left(S \mid C^{*}\right)\left(1-F_{C^{*}}\left(y_{n}\right)\right) \\
& \left.+G_{S}\left(s \mid C^{*}-C_{*}\right)\right)\left(F_{C}^{*}\left(y_{n}\right)-F_{C *}\left(y_{n}\right)\right) \tag{2.2}
\end{align*}
$$

where $G_{S}\left(s \mid c_{*}\right), G_{S}\left(s \mid C^{*}\right)$ and $G_{S}\left(s \mid\left(C^{*} c_{*}\right)\right)$ are the conditional probability mass function of $S$, given that

$$
x \leq c_{*}, \quad x \geq c^{*} \text { and } c_{*}<x<c^{*} \quad \text { respectively }
$$

and $\quad \dot{F}_{C}\left(y_{n}\right)=\int_{-\infty}^{C} \frac{1}{\sqrt{2 \pi \sigma}} \exp \left\{\frac{-1}{2}\left(\frac{x-y_{n}}{\sigma}\right)^{2}\right\} d x$.

Furthermore, it is assumed here that the probability law of An when the process mean has a value $Y_{n}$ is a function of " $Y_{n}$. For example, if the assignable variation follows a normal law, it is given by

$$
\begin{align*}
P\left(A_{n}=a\right) & =\varphi_{A}\left(a=j_{\alpha} / y_{n}\right) \\
& =\int_{(j-.5)^{\alpha}}^{(j+.5) \alpha} \frac{1}{\sqrt{2 \pi \sigma_{\alpha}}} \exp \left\{-\left(\frac{t-z\left(Y_{n}\right)}{\sigma_{\alpha}}\right)^{2}\right\} d t \tag{2.3}
\end{align*}
$$

where $\alpha$ is a small positive constant, $j=0, \pm 1, \pm 2, \ldots$, and $\mu=z\left(y_{n}\right)$ is some function of $y n$.

Thus when the process mean is at 2 , with $\mu=2$ and $\sigma_{\alpha}=1$, we obtain for $j=0, \pm 1, \pm 2, \pm 3, \ldots$

$$
\varphi_{\alpha}\left(j^{\alpha} \mid 2\right)=\Phi((j+.5) \alpha-2)-\Phi((j-.5) \alpha-2)
$$

where $\Phi($.$) is the cumulative distribution function of the$ standard normal variable.

Since $A_{n}$ and $S_{n}$ take discrete values, from (2.1), (2.2) and (2.3) it follows that the unobservable stochastic process reduces to a Markov chain on state space

$$
C_{2}=[\ldots,-2,-1,0,1,2, \ldots .]=[m \mid m \in I]
$$

where $I$ is the set of integers.
The one-step stationary probability $p_{m, m+r}$ of transition from state $m$ to state $m+r$ is given by

$$
\begin{gathered}
p_{m, m+r}=P\left\{Y_{n+1}=m+r \mid Y_{n}=m\right\}=r(m), \text { say, } \\
r=0, \pm 1, \pm 2, \pm 3, \ldots
\end{gathered}
$$

The $\xi_{r}(m)$ 's are given by the convolution of $\left\{\varphi_{r}(m)\right\}$ and $\{r,(m)\}$, that is

$$
\begin{equation*}
\left\{\xi_{r}(m)\right\}=\left\{\varphi_{r}(m) *\left\{\xi_{r}(m)\right\}\right. \tag{2.4}
\end{equation*}
$$

Now that $r(m)$ 's become explicit function of $m$ whatever be the value of $m$ and it is in this respect that the resent work differs from the earlier one. It is physically quite meaningful to consider the present form of $\varphi_{r}(m)$. The implication of (2.3) is that the characteristics of the assignable variation may be affected to a greater or lesser
extent by the current value of the process mean. Such an assumption may be reasonable in many practical situations. For example, in some types of production processes (chemical, metallurgical, etc.) temperature control, which is one of the major components of the operating level of the process, may get affected by the current level of some other component like the amount of impurities in the inputs (reagents/ores). When the operating level of the latter has a tendency to rise it may cause a rise in the temperature also which in effect may bring a disturbance in the functioning of the process. These disturbances affecting the operating level of the process, may then be supposed to follow a probability law depending on the current value of the process.

Thus the present model may be regarded as a substantive generalization of the earlier one. The analysis in this case will also be significantly different.

In the next section, we investigate conditions on $\xi_{r}(m)$ 's for Markov chains on $C_{1}=(0,1,2, \ldots\}$, and $C_{2}$ to be positive recurrent. These conditions are the conditions for stability of the process. For some sufficient conditions on ergodicity of irreducible aperiodic Markov chains on countable or more general state spaces reference may be made to Pakes(1969) and Tweedie(1975) among others. The sufficient conditions that we have derived here is quite convenient for the purposes of the present study.
3. Ergodic behavior of markov chains on state spaces $C_{1}$ and $C_{2}$

We consider a Markoy chain on state space $C_{1}$ with transition probability matrix $P$ where (i,j)th element is j-1(i). Without loss of generality the chain may be supposed to be aperiodic and irreducible. The Markov chain is ergodic if and only if the system of linear equations

$$
\begin{equation*}
\mathrm{u}=\mathrm{p}^{\mathrm{T}} \mathrm{u} \tag{3.1}
\end{equation*}
$$

where $u$ is the column vector $\left[u_{0}, u_{1}, u_{2}, \ldots\right]^{T}$ and $P^{T}$ is the transpose of $P$, has a solution $u_{m}$ satisfying

$$
u_{m} \geq 0
$$

and

$$
\begin{equation*}
\Sigma u_{m}<\infty \tag{3.2}
\end{equation*}
$$

(cf. Feller, 1967).

Since $\xi_{r}(m)$ 's for each $r$ is bounded from above and below, it has a lim sup and a lim inf say $\Delta_{\dot{r}}$ and $\delta_{r}$ respectively. We assume that for at least one value of $r$, $\delta_{r} \neq \Delta_{r}$ and $\delta_{r}>0$ for at least one positive $r$ and one negative $r$. So for all sufficiently large $m$,

$$
0 \leq \delta_{r}-\epsilon \leq r(m) \leq r+\epsilon \leq 1
$$

where $\epsilon$ is arbitrarily small. We also assume that given any $\epsilon>0$, we can find integers $r_{1}, r_{2}$ such that

$$
\text { We also have, } \quad 0<\sum_{-\infty}^{\infty} \delta_{r}<1
$$

In order to determine whether the system of equations (3.1) with variable coefficients has a solution satisfying the condition (3.2), we consider the system of difference equations with constant coefficients

$$
\begin{equation*}
\underset{\substack{r=-r_{1} \\ r \neq 0}}{r_{2} u_{m}}=\underset{\substack{r=-r_{1} \\ r \neq 0}}{r_{2}} \delta_{r} u_{m-r} \tag{3.3}
\end{equation*}
$$

and

The characteristic equations of (3.3) and (3.4) are respectively
and


$$
\begin{aligned}
& { }^{\mathrm{r}_{2}} r(\mathrm{~m}) \geq 1-\epsilon . \\
& r=r_{1} \\
& \text { So } \underset{r=-\infty}{\infty} \quad r<\infty, \quad \sum_{x=-\infty}^{-r_{1}-1} \quad r<\epsilon \quad \text { and } \quad \sum_{r=r_{2}+1}^{\infty} \quad r<\epsilon \quad \text {. }
\end{aligned}
$$

Each has two changes of sign, and so has at most two positive roots.

Since $X(0)>0$ and $X(1)<0, X(Z)$ has exactly two positive roots, say, $0<s_{1}<1$ and $s_{2}>1$.

Since $\beta(0)>0$ and $\beta(1)=0, \beta(Z)$ has unity as a root and hence has exactly one more positive root, say $p$.

From (3.5) and (3.6) we have

$$
\begin{array}{lllll}
X(0)>0 & X\left(s_{1}\right)=0 & X(p)<0 & X(1)<0 & X\left(s_{2}\right)=0 \\
\beta(0)>0 & \beta\left(s_{1}\right)>0 & \beta(p)=\beta(1)=0 & \text { and } & \beta\left(s_{2}\right)>0
\end{array}
$$

irrespective of whether $p$ is less than, equal to or greater than unity

Suppose $p<1$. Consider the iteration formula
$y_{m}^{\{n+1)}=\min \left[\frac{\sum_{r=1}^{r_{1}} \delta_{-r} y_{m+r}^{(n)}+\sum_{r=1}^{r_{2}} \xi_{r}(m-r) y_{m-r}^{(n)}}{\sum_{r=1}^{r_{1}} \xi_{-r}(m)+\sum_{r=1}^{r_{2}} \Delta_{r}}, p^{m}\right], n=1,2, \ldots$
with $y_{m}^{\{0\}}=p^{m}, y O^{\{n\}}=1$ for $n=0,1,2, \ldots$
Then

$$
y_{m}^{(1)} \frac{\sum_{r=1}^{r_{1}} \delta_{-r} p^{m-r}+\sum_{r=1}^{r_{2}} \xi_{r}(m-r) p^{m-r}}{\sum_{r=1}^{r_{1}} \xi_{-r}(m)+\sum_{r=1}^{r_{2}} \Delta_{r}} \leq y_{m}^{(0)}=p^{m}
$$

for sufficiently large $m$, say $m \geq M_{0}$
since

$$
\begin{aligned}
& p^{m}=\frac{\sum_{r=1}^{r_{1}} \delta_{-r} p^{m-r}+\sum_{r=1}^{r_{2}} \Lambda_{r} p^{m-r}}{\sum_{r=1}^{r_{1}} \delta_{-r}+\sum_{r=1}^{r_{2}} \Delta_{r}} \text { and } \epsilon>0 \text { is arbitrary } \text { and } \\
& y_{m}^{2)}=\frac{\sum_{r=1}^{r_{1}} \delta-r y_{m+r}^{(1)}+\sum_{r=1}^{r_{2}} \xi_{r}(m-r) y_{m-r}^{(1)}}{\sum_{r=1}^{r_{1} \xi_{r}(m)}+\sum_{r=1}^{r_{2}} \Delta_{r}} \leq \frac{(1)}{Y_{m}} .
\end{aligned}
$$

In general, for sufficiently large m

$$
y_{m}^{(n+1)} \leq y_{m}^{(n)}, \quad n=0,1,2, \ldots
$$

Also

$$
\begin{aligned}
& \geq \frac{\sum_{r=1}^{r 1} \delta_{-r} p^{m+r}+\sum_{r=1}^{r_{2}} \delta_{r} p^{m-r}}{\sum_{r=1}^{\sum_{1}} r+\sum_{r=1}^{r_{2}} r} \text { for sufficiently large } m \\
& \geq \frac{\sum_{r=1}^{r_{1}} \delta_{-r} s_{i}^{m+r}+{ }_{\sum_{r=1}^{2} \delta_{r}} s_{1}^{m-r}}{\sum_{r \neq 0} \Delta r}=s_{1}^{m} \quad \text { and }
\end{aligned}
$$

$$
\begin{aligned}
& \geq \frac{\substack{r=-r_{1} \\
r \neq 0}}{\sum_{2} \delta_{r} s_{1}^{m-r}} \underset{\substack{\sum_{2} \\
r=-r_{1} \\
r \neq 0}}{r_{2}} \Delta_{r} \quad .
\end{aligned}
$$

So in general $u_{m}^{(n+1)} \geq u_{m}^{(n)}$.

Thus the sequence $\left(u_{m}^{(n)}\right\}$, for sufficiently large values of $m$ is non-decreasing and hence will tend to., a positive limit $u_{m}$. This will ensure that $u_{m}(n)$ tends to a positive limit for every value of m .

Let $u^{(n)}$ denote the column vector $\left[u_{0}^{(n)}, u_{1}^{(n)}, u_{2}^{(n)}, \ldots\right]^{T}$. Then the iteration formula (3.8) can be presented as

$$
u(n+1) \quad=p^{T} u(n) \quad=\left(p^{T}\right)^{n}\left[y_{0}, y_{1}, y_{2}, \ldots\right]^{T}
$$

where $P$ is the transition probability matrix of $C_{1}$.

Since $\lim _{n \rightarrow \infty} u(n)=u=\left[u_{0}, u_{1}, u_{2}, \ldots\right]^{T}>0, \lim _{n \rightarrow \infty}\left(P^{T}\right)^{n}$
exists and is non-null.
Thus a sufficient condition for the ergodicity of $C_{1}$ is that equation (3.6) will have a positive root $p, 0<p<1$. It was shown that (cf. Equation (5.5), Sarkar and Bhattacharji, 1986) $\mathrm{p}<1$ if

$$
\begin{equation*}
\sum_{r=1}^{r_{1} r} \delta_{-r}>{ }_{\sum_{r=1}^{r_{2}} r} \Delta_{r} \tag{3.9}
\end{equation*}
$$

Thus (3.9) is a sufficient condition for ergodicity of the chain $C_{1}$. In case the chain $C_{1}$ is periodic we can use the iteration formula

$$
u_{m}^{(n+1)}=\frac{u_{m}^{(0)}+u_{m}^{(1)}+\ldots+(1)}{(n+1)}
$$

with $u_{m}^{(0)}=Y_{m}$ in place of (3.8)
This will yield a solution to the system of equation.

For a Markov chain on $\mathrm{C}_{2}$, it can be shown analogously, that the chain is positive recurrent if
where $\delta^{\prime} r_{r}$ and $\Delta^{\prime} r$ are respectively the infimum and supremum of $\xi_{r}(m)$ as $m \rightarrow \infty$ 。
4. An algorithm for evaluation of steady state distribution of the observations.

I Choose a model of the type (2.3) with probability masses concentrated at $j^{\alpha}, j=0, \pm 1, \pm 2, \ldots, \alpha$ being a small positive constant.

II Choose control limits $C_{*} / \alpha, C^{*} / \alpha$ and $G_{S}\left(s^{\alpha} \mid.\right)$.
III Obtain the $\xi_{r}(m)^{\prime} s$ by (2.4).
IV Check conditions of (3.10). If (3.10) is satisfied go to step V.

If (3.10) is not satisfied, the system does not attajn stability.
$V$ Use iteration formula (3.7) with $y_{m}^{(0)}=p^{m}$ for $m \geq 0$ and the formula

$$
y_{m}^{(n+1)} \min \left[\frac{\Sigma \xi_{r}(m-r) y_{m-r}^{(n)}+\Sigma \delta_{r}^{\prime} y_{m-r}^{(n)}}{\Sigma \Delta_{-r}+\Sigma \xi_{r}(m)}, \eta_{m}\right]
$$

with ${ }^{(0)}=m$ for $m<0$, where $\eta$ is the positive root ( $>1$ ) of the equation corresponding to (3.6).


VII Evaluate $\pi_{m}$ by the equation $\pi_{m}=\frac{u_{m}}{\sum_{m} u_{m}}$, where $u_{m}$ 's are the stabilised values at step VI.

VIII Obtain the steady state distribution of the observations by

$$
F(x)=\sum_{m} \pi_{m} \int_{-\infty}^{x} f_{x}(x / m) d x
$$

## 5. Ilustration

For illustrative purposes we consider three different cases. In the first two cases we take

$$
\mu= \begin{cases}m^{1 / m} & , \quad m>0 \\ -(-m)-1 / m & , \\ 0< & m<0\end{cases}
$$

in (2.3). For the third case we take

$$
\mu=m(0, \pm 1, \pm 2, \ldots)
$$

in (2,3)

Case I: We choose the control limits $C_{*}=-5.0$ and $C^{*}=5.0$ with $\alpha=1.0$, the following values of Gs(.|.) are chosen.

$$
\begin{aligned}
& G\left(7 \mid C_{*}\right)=G\left(-7 \mid C^{*}\right)=0.4 \\
& G\left(6 \mid C_{*}\right)=G\left(5 \mid C_{*}\right)=G\left(-6 \mid C^{*}\right)=G\left(-5 \mid C^{*}\right)=0.2 \\
& G\left(4 \mid C_{*}\right)=G\left(3 \mid C_{*}\right)=G\left(-4 \mid C^{*}\right)=G\left(-3 C^{*}\right)=0.1 \\
& G\left(0 \mid\left(C^{*}-C_{*}\right)=1.0\right. \\
& G(. \mid .)=0, \text { otherwise }
\end{aligned}
$$

Table 1 gives the transition probability matrix


It is seen that
$\Sigma r \delta_{-r}>\Sigma r \Delta_{r}$ and $\Sigma r \delta_{r}^{\prime}>\Sigma r \Delta_{-r}^{\prime}$
Thus the condition (3.10) is satisfied and so the controller induces stability in the system. The steady state probability $\pi_{\mathrm{m}}$ of the process mean and the steady state distribution function $F(x)$ of the observations are presented in table 3 and 4 respectively.

Case II: We choose the control limits $C_{*}=04.0, C^{*}=4.0$ and $\alpha=0.5$. The values of $G x(. \mid$.$) are taken as follows:$
$\mathbf{G}\left(3 \mid C_{*}\right)=\mathbf{G}\left(-3 \mid C^{*}\right)=G\left(0 \mid\left(C^{*}-C_{*}\right)\right)=1.0$
$G(. \mid)=$.0.0 , otherwise.
 and table 6 respectively. Condition (3.10) is again satisfied, and the controller induces stability in the system. The steady state probabilities $\pi_{m}$ of the process mean the steady state distribution of the observations are presented in table 7 and table 8 respectively.

Case III: We take the control limits $C_{*}=3.0, C^{*}=3.0$ $\alpha=1.0$, and

$$
\begin{aligned}
& G\left(9 \mid C_{*}\right)=G\left(-9 \mid C^{*}\right) \stackrel{=}{=}\left(0 \mid\left(C^{*}-C_{*}\right)\right)=1.0, \\
& G(. \mid \cdot)=0.0, \text { otherwise. }
\end{aligned}
$$

Table 9 gives the transition probability matrix. In this case condition (3.10) is violated and it is observed that the two-sided controller fails to induce stability into the process.

We have considered some other sets of values of $G(. \mid$.$) .$ In every situation we have found the condition (3.10) is violated and also that the "two-sided controller' fails to induce stability. It appears that the condition (3.10) is not only sufficient but also necessary for the stability' of the process.

## Acknowledgement:

We thank Mr. B. Kartikeyan, Research Scholar, Department of Mathematics, Indian Institute of Technology, Kharagpur, for the computational work in preparing all these tables of the paper.


## TABL心

VALUES Or SUPREMA AND INFIMA: Due to Symmetry $\delta_{-r}=\delta_{r}^{\prime}, \Delta_{r}^{\prime}=\Delta_{-r}^{\prime}$.

| -9 | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\delta_{r}$ | .001 | .011 | .061 | .155 | .198 | .167 | .121 | .078 | .037 | .009 | .001 | .000 | .000 | .000 |
| $\Delta r$ | .002 | .019 | .094 | .203 | .234 | .196 | .141 | .090 | .043 | .037 | .069 | .050 | .017 | .002 |

TABLE 3
STEADY STATE PROBABILITY OF THE PROGESS MLANS

| $\pm m$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m_{m}$ | .07 | .18 | .12 | .08 | .05 | .02 | .01 | .00 |

TABLE 4
STEADY STATE PROBABILITY OF THE OBSARVAIIONS:. $F(-X)=1-F(x)$, due to symmetry

| $x$ | 0.0 | .5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | 4.5 | 5.0 | 5.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $F(x)$ | .4985 | .5630 | .6286 | .6942 | .7563 | .8117 | .8586 | .8967 | .9271 | .9501 | .9669 | .9785 |

$$
-8
$$

$$
-7
$$

$$
\begin{array}{r}
-6 \\
-5 \\
-4 \\
-3 \\
-2 \\
-1 \\
0 \\
\hline
\end{array}
$$

 . $183.1 \% 6.165 .109 .056 .023 .007 .002 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000$. 000 . 000
 .077 .132 .180 .192 .160 .105 .054 .022 .007 .002 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 . 040.076 .128 .172 .183 .152 .099 .051 .070 .006 .002 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
 .063 .059 .057 .071 .101 .130 .136 .112 .072 .037 .015 .005 .001 . 000 . 000 . 000 . $000-.00 .000 .000 .000$ . 093.099 .097 .070 .066 .079 .096 .098 .060 .052 .026 .010 .003 .001 .000 .000 .000 .000 .000 .000 .000 . 097.129 .136 .114 .082 .061 .057 .062 .061 .049 .032 .016 . 006 . 002 . 000 . 000 . 000 . 000 . 000.000 .000
 .037 .079 .134 .176 .181 .147 .095 .051 .027 .018 .014 .011 . 007 . 003 . 001 . 000 . 000 . 000 . 000 . $000-.00$
 .004 .015 .042 .088 .146 . 189.192 .152 .095 . 047 . 018 . 006 . 002 . 001 . 001 . 000 . 000 . 000 . 000 . 000 . 000 .001 .004 .015 .041 .087 .145 .189 .193 .154 .097 .047 .018 . 006 . 0022.000 .000 . 000 . 000 . 000 . 000 . 000 .000 .000 .002 .009 .028 .066 . 121.175 .197 .175 . 121.066 . 028 . 009 . 002 . 001 . 000 . 000 . 000 . 000 . 000 .000 .000 .000 .000 .002 .009 .028 . 066 . 121.175 . 197.175 .121 .066 . 028 . 009 . 002.000 .000 .000 .000 .000 .000 .000 .000 .000 .001 .002 .009 . 028 . 066 . 121 . 175 . 197.175 . 121 . 066 . 028 . 009 . 002 . 0000 .000 .000 .000 .000 .000 .000 .000 .002 .006 .018 . 047.097 .154 .193 .189 .145 . 087 . 041 . 015.004 .001
 .000 .000 .000 .000 .000 .000 .001 .002 .004 .006 .010 .021 .048 .095 .151 .189 .185 .142 .085 .040 .015 -.00 .000 .000 .000 .000 .000 .001 .003 .007 .011 .014 .018 . 027.051 .095 . 147.181 .176 . 134.079 .037
 .000 .000 .000 .000 .000 .000 .000 .002 .006 .016 .032 .049 .061 .062 .057 .061 .082 .114 .136 .129 .097

 $.000 .000 .000 .000 .000-.00 .000 .000 .000 .001 .006 .018 .045 .089 .137 .165 .156 .118 .075 .047 .036$
 .000 .000 .000 .000 .000 .000 .000 . 000 . 090 . 000 . 000 . 002 . 007 . 022 . 054 . 105 . 160 . 192 . 180 . 13277
 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .002 .007 .023 .056 .109 . 165 . 1963 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .002 .007 .023 .056 . 109.166 . 196

TABLE 6
VALUES OF SUPREMA AND INFIMA: Due to symmetry $\delta_{-r}=\delta_{r}^{\prime}, \Delta_{r}=\Delta_{r}^{\prime}$

|  | -10 | -9 | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\delta_{r}$ | .005 | .015 | .037 | .072 | .112 | .136 | .130 | .101 | .071 | .032 | .011 | .003 | .001 | .000 | .000 | .000 | .000 | .000 | .000 |
| $\Delta_{r}$ | .008 | .024 | .059 | .113 | .168 | .197 | .183 | .133 | .077 | .057 | .059 | .063 | .058 | .042 | .025 | .011 | .004 | .001 | .000 |

TABLE 7
STEADY STATF PRORABILITY OF THE Phogess MEANS

| $\pm \mathrm{m}$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\pi_{\mathrm{m}}$ | .01 | .22 | .15 | .08 | .03 | .01 | .00 |

TABLE $\quad 8$
S'IEADY STATE' PROBABILITY OF 'L'HB OBSHRVATIONS: $F(-x)=1-F(x)$, Due to symmetry

| $x$ | 0.0 | .5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | 4.5 | 5.0 | 5.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $F(x)$ | .5000 | .5630 | .6248 | .6841 | .7398 | .7907 | .8359 | .8747 | .9070 | .9329 | .9530 | .9681 |



## References:

Feller, W. (1967). An Introduction to Probability Theory and its Application 1. John Wiley and Sons, New York.

Pakes, A.G. (1969). Some conditions for ergodicity and recurrence of Markov chains. Operations Research 17, 1058 - 1061.

Sarkar, A. and Bhattacharji, A.K. (1986). A Markov model in process control. Journal of Statistical Computations and Simulation 26, 115-126.

Twéedie, R.L. (1975). Sufficient conditions for ergodicity and recurrence of Markov chains on a General state space. Stochastic processes and their applications 3385 - 403.

