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Abstract

In automatic process control, it is sometimes realistic to
assume that the assignable variatiQ~ affecting the operating level
of the process at every epoch depends on the current value of -the
process. In such situations, the conditions for system stability
are investigated, when a 'two-sided controller' is used. An
algorithm is provided here to obtain the steady state distribution
of the observations. of the process. Three numerical illustrations
are also presented.
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1. Introduction

We have shown in an earlier work (Sarkar, and
Bhattacharji, 1986) that a two-sided controller' with a
properly chosen parameter stabi~ises a high speed production
process sUbject ~o a specific· type of assignable variation.
It is assumed there that the amount of shift from the
current value of the process operating level (Process mean)
produced by assignable causes follow a Normal distribution
with mean zero and a known variance, irrespective of the
current value of the process.

In the present paper, we consider a more general type
of assignable variation which follows a probability law
dependent on some suitable function of the current. value of
the process mean. The conditions under which a \two-si~ed
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controller' induces stability into the process in such a
situation are investigated here. A method, along with an
algorithm, for evaluating the steady state distribution of
the observations is outlined. The analysis provides an
insight into the behavior of the process so that the
implementation of such a control device can be carried out
easily.

b •1

\

2. The process model and the probability laws of the
random variableso

The control device and the process model considered
here are formally identical to those of the earlier work
(Sarkar and Bhattacharji, 1986). Thus we suppose that
assignable causes shift the level of the process mean y at
every epoch n, by a random amount an' independently of t~me.
The control device gets activated and shifts Yn t by a random
amount sn only when the observation xn at epoch n goes
beyond given lower and upper control limits C. and C·
respectively. So long as observations on the process remain
within the two control limits no action is taken. Denoting
the random variables corresponding to xn' Yn' an and sn by
the corresponding capital letters the process model,
therefore, takes the following form

Xn = Yn + €n

-.

•
n ~ 1 (2.1)

with initial value Yo = 0, and E[€n] = O. It is assumed
without much loss of generality that the random variables
Yn' An and Sn take discrete values 0, ±1, ±2, ...

It is assumed that the probabilit~ law on Xn, when the
process mean has a value Yn is N(Yn' a ), and that of Sn for
every epoch n, is

. ..
~s(sIYn) = Gs(slc.) FC*(Yn) + Gs(sic ) (1-Fc*{Yn»

I • *+ Gs(sC -c.» (FC (Yn) -FC* (Yn»

where Gs{slc.), G (slc*) and Gs(sl (C* __C*» are
conditional probabilfty mass function of S, given that

the
•

x ~ C., x ~
~. and C* < x < C· respectively,~

C

J /2:0
-1 x-Yn

and FC{Yn) = exp{ -( )2} dx.
2 a

-co

.'



•~\
3

'Furthermore, it is assumed here that ~he probability law of
An when the process mean has a value Yn is a function of,': Yn.
For example, if the assignable variation follows a normal
law, it is given by

1

J2'fT° a

P(An = a) = ~A (a = ja/Yn)

= {j+OS)Q

(j-.5)Q

t-z (Yn ) 2
exp{ -( ) } dt

CIa

(2.3)

....,

•

where a is a small positive constant, j = 0, ±1, ±2,
and ~ = z(Yn) is some function of yn.

Thus when the process mean is at 2, with ~ = 2 and
0a = 1, we obtain for j = 0, ±1, ±2, ±3, •...

~a(jaI2) = t«j+.5)a - 2) - t«j-.5)a -2)

where t(.) is the cumulative distribution function of the
standard normal variable.

Since A~ and Sn take discrete values, from (2.1), (2.2)
and (2.3) 1t follows that the unobservable stochastic
process reduces to a Markov chain on state space

C2 = [ .... , -2, -1, 0, 1, 2, ••.• ] = [mlm E I ]

where I is the set of'integers.

The one-step stationary probability Pm,m+r
transition from state m to state m+r is given by

of

Pm,m+r = P{ Yn+1 = m+r I Yn = m,} = r(m), say,

•
r = 0, ±1, ±2, ±3, ..••

The F;r(m)'s are given by the convolution of (~r(m)}

and ( r,(m)}, that is

{F;r(m)} = (~r(m) * {F;r(m)} (2.4)

.',
I~

Now that r(m)'s become explicit function of m whatever be
the value of m and it is in this respect that the resent
work differs from the earlier one. It is physically quite
mean Lnqf'u I to consider the present form of ~~(m). The
implication of (2.3) is that the cheractier-Lst Lcs of the
assignable variation may be affected to a greater or lesser



extent by the current value of the process mean.. Such an
assumption-. may .be .re~.sonable ill many praptical si,tuations.
For example, in some types of produot.i.on. procasaes
(chemical, metallurgical, etc.) temperature control, which
is one of the major components of the operating level of the
process, may get affected py the current level.of,some.other
component li~e the amount" of impurities in the inputs
(reagents/ores). When the operating level of the latter has
a tendency to rise it may cause a rise in ,the temperature
also wh~ch' in effect may bring a disturbance in the
functionfng of the process. These disturbances affecting
the operat'f'ng level of the. process, may then be supposed to
follow' a propability law depending on the current value of
the process.

Thus the present model may be regarded as a sUbstantiv~
genex:alization of the earlier one. The analysis in' this
case wi~l also be significantly different. .

.. '

In the next section, we investigate conditions on
~(m)'s for Markov chains on C1 = { 0, 1, 2, ••• } and C~ to
be positive reourrent. These conditions are the'condit10ns
for stabil~ty of the process., . For. some sufficient
conditionson ergodicity 'of.. irreducible aperiodic M~rkov

chains on countable or more general state spaces reference
may be made to Pakes(1969) and Tweedie(1975) among. others.
The sufficient conditions that we have derived here is quite
convenient fO,r the purposes of the-.pr~sent study. "

3. Ergodic behavior of Narkov chains on state spaces
c'1 and C2

We consider a ~ar~ov chain .on state space 91 with
transition' probability matrix .P . wher~ (i, j )th element
is j-1(i). Without loss of generality the chain may' be
supposed to be aperiodic and irreducible. The Markov chain
is ergodic if and only if the system of linear equations

••,

.,

.."

•

(3.1) •
'. T Twhere u is the column vector [uO I u1' U~I ••• ] and P is

the transpose of P, has a solution Urn sat1sfying

and

(cf. Feller, 1967).

•,..
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since ~r(m)'s for each r is bounded from above and below,
it has a lim sup and a lim inf say 6£" and &r
respectively. We assume that for at least one va ue of r,
&r' of 6 and &r > 0 for at least one positive rand
one negative r. so for all sUfficiently large m,

o ~ &r - € ~ rem) ~ r + € ~ 1

where £ is arbitrarily small. We also assume that given any
£ > 0, we can find integers r1' r2 such that

r2
I: rem) ~ 1 - € •

r=r1

5

co
So I: r < co ,

r=-co

We als? have,

-r1-1
I: r < £

r=-co

co
o < 1: &r < 1.

-co

r ,< £

•

•...

•

In order to determine whether the system of equations (3.1)
with variable coefficients has a solution satisfying the
condition ,(3.2), we consider the system of difference
equations with constant coefficients

r2 r2
1: 6r: um = I: &r um-r (3.3)

r=-r1 r=-r1
r=f0 r=fO

and

ri r2 r1 r2
( I: 6_r + 1: 6r ) um = I: 6_r um+r + I: 6c um- r (3.4)

1 1 1 1

The characteristic equations of (3.3) and (3.4) are
respectively

X(Z) =

and

= 0
(3.5)

(3.6)

•,..

~(Z) =
rl

- ( 1: &-r +
r=l

+
r2 r2-r
1: 6r Z

r=l
= 0
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Each has two changes of sign, and so has at most two
positive roots.

Since X(O) > 0 and X(l) < 0, X(Z) has exactly two positive
roots, say, 0 < sl < 1 and s2 > 1.

Since P(O) > 0 and P(l) = 0, P(Z) has unity as a root
and h~nce has exactly one more positive root, say p.

From (3.5) and (3.6)" we have

• ..

,..

X(O) > 0

P(O) > 0

X(p) < 0 X(l) < 0

pep) = P(l) = 0 and P(s2) > 0
•

irrespective of whether p is less than, equal to or greater
than unity

Suppose

{n+1}
Ym = min

p < 1. Consider the iteration formula

r1 (n) r2 (n)
~ 6_r Ym+r + ~ ~r(m-r)Ym-r

r=l r=l
pl1l , n=1,2, .•

r1 r2 .
~ ~-r(m) + ~ fJc

r=l r=l

..

•

with y~O}

Then

{n}
= pm, yo = 1 for n = 0, 1, 2, ••• (3.7)

(1 )
Ym =

r2
~. f;r (m-r ) pID-r

r=l (0)
s ym = pl1l

·..: .

•
for sufficiently large m, say m ~ MO,

•

•
,
•
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since

r1
prn-r

r2 m-r
~ 6_r + I: 6r p

r=l r=l
pm =

r1 r2
I: 6_r + I: !:i r

r=l r=l

and e > 0 is arbitrary
and

(1)
Ym

(1) r2 (1)
6_r Ym+r + I: ~r (m-r) Ym-r

r=l(2) _
~m -

•

In general, for sufficiently large m

(n+1) (n)
Ym ~ Ym n = 0, 1, 2, ••.•

•

·•

•

Also
r1 (0 ) r2 (0)
I: 6_r Ym+r + I: ~r (m-r) Ym-r

~1)_
r=l r=l

m -
r1 r2
~ ~-r(m) + ~ I1r

r=l r=l

r1 r2
6 pm+r + m-rI: -r I: 6 r p

r=l r=l
~ for sufficiently large m

r1 r2
~ r + I: r

r=l r=l

r1 m+r r2 m-r
I: 6_r s' + I: 6 r Sl1

r=l r=l m
~ = sl and

I: !:ir
Ji'o

•

•
•
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r1 (1) r2 (1)
I: 6_r Ym+r + I: ~ (m-z) Ym-r

r=1 r=1
~:)= ------------

r2 m-r
I: 6r s1

r=-r1
r+0 m

~ = s1 •
r2
I: !:lr

r=-r1
r+0

•

.,

In general for all sufficiently large m,
{n} m

Ym ~ s1 .

Thus the sequence {~~} } is monotonically non-increasing
for each m with a positive lower bound (which is siID for
sUfficiently large m) and an upper bound· pm. So it
converges to a positive limit, say Ym, which is at most
equal to pm, for each m.

•

Also, for all sUfficiently large m,

= ._-------------
r1 r2
:E ~r(m) + :E !:lr

r=1 r=1

Now consider the iteration formula

< Pm for m ~ mO •

•
(n+1) r2 (n)

Urn = I: ~r(m-r) Urn-r
r=-r1

with
(0)

um = Ym' m=0,1,2, ... (3.8)

Then for sUfficiently large values of m, &;)~ ~)

•
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So in general

(n+1) (n)
Urn ~Urn

9

•

Thus the sequence (u(n\, for sufficiently large values of m
is non-decreasing an~ hence will tend to.~a positive limit
urn. This will ensure that um(n) tends to a positive limit
for every v~lue of m.

Let &n)denote the column vector [U~n~ uln~ u~n~ ... ]T .

Then ~he iteration formula· (3.8) can be presented as

·u(n+1) = pT u(n)
n

= (pT) [Yo, Y1' Y2' ••• ]T

where P is the transition· probability matrix of C1•

Since lim u(n) = u = [ uO' u1' u2' •.. ]T > 0,
n->ao

n
lim CPT)
n->ao

•
exists and 1s non-null •

Thus a sufficient condition for the ergodicity of C1 is that
. equation (3.6) will have a positive root p, 0 < p < 1. It

was shown that (cf. Equation (5.5), Sarkar and Bhattacharji,
1986) p<i if

rl
I: r 6_r >

r=l
(3.9)

I

•

•

•

Thus (3.9) is· a sufficient condition for ergodicity of the
chain C1. In case the chain C1 is periodic we·can use. the
iteration formula
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For a Markov chain on C2, it can be shown analogously,
that the chain is positive recurrent if

,
where 6' rand !J. r are respectively the infimum and supremum
of ~r(m) as m -> 00.

r2
> ~ r

r=l
!J. -r '

(3.10)

•

4. An algorithm for evaluation of steady state distribution
of the observations.

•

probability
... , a being

If (3.10) is satisfiedr90

I Choose a model of the type (2.3) with
masses concentrated at ja, j = 0, ±1, ±2,
a small positive constant.

II Choose control limits c*/a,c*/a and Gs(sal .).

III Obtain the ~(m)'s by (2.4).

IV Check conditions of (3.10).
to step V.

If (3.10) is not satisfied, the system does not attai1n
stability.

V Use iteration formula (3.7) with y~O)= pm for m ~ 0
and the formula

(n+l). [
Ym = mln

(n) , (n)
~ ~r(m-r) Ym-r + ~ or Ym-r ,,'. ]

.m •
(0) __

with y m for m < 0, where" is the positive rootm .
(>1) of the equation corresponding to (3.6).

VI
(0)

Use iteration f9rmula (3.8) 'with Urn = Ym' m=O,
±1,±2' •..• Ym's are.the stabilised values of step V

...

•
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Urn
VII Evaluate ~m by the equation ~m = . , where Urn's are

I: Urn
m

the stabilised values at step VI.

VIII Obtain the steady
vations by

state distribution of the obser-

..
x

F(x) = ;"m Ifx(x/m l dx .

-00

5. Ilustration

For illustrative purposes we consider three different
cases. In the first two case$ we take

•

m > 0

m < 0

m = 0

in (2.3). For the third case we take

~_F m (0, ±1, ±2, ... )

Case I: We choose the control limits C* = -5.0 and C* = 5.0
with a = 1.0, the following values of Gs(.I.) are chosen .

• G(7IC*) G(-7Ic*)= = 0.4

G(6Ic*) = G(5Ic*) = G(-6Ic*) = G(-5Ic*) = 0.2
:

G(4Ic*) = G(3Ic*) = G(-4Ic*) = G(-3C*) = 0.1

G( 0 I (C*-C*) = 1.0

G(.I.) = 0, otherwise

•
Table 1 gives the transition
[Pij] = [~j-i(i)] and Table 2 the

-and !lc for r = 0, ±1, ±2, •..

probability matrix
values of &r; 6 r, &r



= 1.0

*C* = 04.0, C = 4.0
taken as follows:

12

It is seen that
, ,

~ r &-r > ~ r ~ and ~ r 6r .> ~ r 6. -r

Thus the condition (3.10) is satisfied and so the controller
induces stability in the system. The steady state
probability 1T of the process mean and the steady state
distribution ~nction F(x) of the observations are presented
in table 3 and 4 respectively.

Case II: We choose the control limits
and a = 0.5. The values of Gx(.I.) are

G(3IC*) = G(-3Ic*) = G(ol(c*-c*»

G(.I.) = 0.0, otherwise.

The transition probability matrix and the values of &r'
~, s' rand '\: for t = 0, ±1, ±2, ••• are given in table 5
and table 6 respectively. Condition (3.10) is again
satisfied, and the controller induces stability in the
system. The steady state probabilities 1Tm of the process
mean the steady state distribution of the observations are
presented in table 7 and table 8 respectively.

Case III: We take the control limits C* = 3.0, C* = 3.0
a = 1.0, and

G(9IC*) = G(-9Ic*) ~ G(ol(c*-c*» = 1.0,

G(.I.) = 0.0, otherwise.

Table 9 gives the transition probability matrix. In this
case condition (3.10) is violated and it is ·observed that
the two-sided controller fails to induce stability into the
process.

We have considered some other sets of values of G(.I.).
In every situation we have found the condition ( 3 .10) is
violated and also that the 'two-sided controller' 'fails to
induce stability. It appears that the condition (3.10) .is
not only sufficient but also necessary for the stability/of
the process.
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TABLA 2

VALUES OJ!' SUPR»1A AND INFIlv1A: Due to Symmetry 6_'r = 6~ ,
/

A- = ~ •r -r

-9 -8 -7 -6 -6 -4 -3 -2 -1 0 1 2 3 4 5

6r .001 .011 .061 .155 .198 .167 .J.21 .078 .037 .009 .001 .000 .000 .000 .000

A r --------LO0 2 .019 .094 .2>3 .234 .196 .l~l. .• 090 .043 .037 .069 .060 .017 .002 .000

TABLE 3'

STEADY STATE PROBABILITY b~ THBPRO~SS M~S

to m 0

. ,Tm- .07

1

.18

2 3

.12 .08

4 6

.05.02

6

.01

7

.00

TABkE __~

ST&.DY STATE FlI>BABILI TY O~ THE OBSERVATION S:_ 7(-x) =1-. F( x), due to symmetry

------_._------~--------- .
x

I.. 0.0 .5 1.0 ~.6 2.0 2.5 3.0 3.5 4.0 4.6 5.0 5.5

~

F(x) .4985,6630 .6286.6942.7563 .8117 .8586.8967 .9271 .9501 .9663 .9785
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......... 133 .182 .195 .1~ .107 .055 .022 .007 .002 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .

......... 077 .132 .180 .192 .160 .105 .054 .022 .007 .002 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 " .

......... 040 .076 .128 .172 .183 .152 .099 .051 .028 .006 .002 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .

......... 036 .047 .075 .118 .156 .165 .137 .089 .045 .018 .006 .001 .000 .000 .000 -.00 .000 .000 .000 .000 .000 ,

. 063 .059 .057 .071 .101 .130 .136 .112 .012 .037 .015 .005 .001 .000 .000 .000 .000 -.00 .000 .000 .000 ,

......... 093 .099 .087, .070 .066 .079 .096 .098 .088 .052 .026 .010 .003 .001 .000 .000 .000 .000 .000 .000 .000 .

......... 097 .129 .136 .114 .'082 .061 .057 .062 .061 .049,.032 .016 .006 .002 .000 .000 .000 .000 .000 .000 .000 .

......... 070 .119 .158 .1~ .135 .091 .055 .,039 .0J5 .032 .025 .016 .008 .003 .001 .000 .000 .000 .000 .000 .000

.........037 .079 .134 .176 .181 .147 .095 .051 .027 .018 .014 .011 .007 .003 .001 .000 .000 .000 .000 .000 -.00 .

......... 015.040 .085 .142 .185 .189 .151 .095 .048 .021 .010 .006 .004 .002 .001 .000 .000 .000 .000 .000 .000 .

......... 004 .015 .042 .088 .146 .189 .192 .152 .095 .047 .018 .006 .002 .001 .001 .000 .000 .000 .000 .000 .000 '

......... 001.004 .015.041.087.145 .189 .193 .154' .097 .047 .018.006 .002 .000 .000.000.000 .000 .000 .000 ..

.........000.000.002.009 .028.066 .121 .175 .197 .175 .121 .066 .028 .009 .002 .001 .000.000 .000 .000.000 .

......... 000 .000 .000 .000 .002 .009 .028 .066 .121 .175 .191 .175 .121'.066 .028 .009 .002 .000 .000 .000 .000 .

. 000 .000 .000 .000 .000 .001 .002 .009 .028 .066 .121 .175 .197 .175 .121 .066 .028 .009 .002 .000 .000 '

2 000.000.000 .000 .000 .000 .000 .002 .006 .018 .047 .,097 .154 .193 .189 .145 .087 .041 .015 .004 .001 ..

3 ......•.. 000.000 .000 .000 .000 .000 .001 .001 .002 .006 .018 .047 .095 .152 .192 .189 .146 .088 .042 .015 .004 .

4 000 .000 .000 .000 .000 .000, .001 .002 .OM .006 .010 .021 .048 .095 .151 .189 .185 .142 .085 .040 .015 .

5 -.00 .000 .000 .000 .000 .000 .001 .003 .007 .011 .014 .018 .027 .051 .095 .147 .181 .176 .134 .079 .037 ,.

6 , .. 000 .000 .000 .000 .000 .000 .001 .003 .oar .016 .025 .032 .035 .039 .055 .091 .135 .164 .158 .119 .070 .
4

7 000 .000 .000 .000 .000 .000 .000 .002 .006 .016 .032 .049".061 .062 .057 .061 .082 .114 .136 .129 .097 .

8 000.~.000.000.000.000.000 .001 .011 .010 .026 .052 .080 .098 .096 .079 .066 .070 .087 .099 .093 '" .~ .

•

•

9 000 .000 .000 -.00 .000 .000 .000 .000 .001 .005 .015 .037 .072 .112 .136 .130 .101 .071 .057 .059 .063 .

10 000 .000 .000 .000 .000 -.00 .000 .000 .000 .001 .006 .018 .045 .089 .137 .165, .156 .118 .075 .047 .036 .

11 000 .000 .000 .000 .000 .000 .000 .000 .010 .000 .002 .006 .020 .051 .099 .152 .183 .172 .128 .076 .040 '

12 000 .000 .000 .000 .000 .000 .000 ,000 .000 .000 .000 .002 .007 .022 .054 .105 .160 .192 .180 .132 .077 .

13 000 .000 .000 .000 .000 .000 .000 .000 .080 .000 .000 .000 .002 .007 .022 .OS5 .107 .164 .195 .182 .133 .

14 ., , .. 000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .002 .007 .023 .056 .109 .165 .196 ,183 .

15 . '" 000 .000 .000 .000 .000 .000 .000 .000 .000 .000· .000 .000 .000 .000 .002 .007 .023 .056 .109 .166 ·.196 .

..................................... .

.......... ., .

................. . ' .

TABlE 5
TRftHSITIOH PlCBABIlITY nSTRIX
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TABLE 1

SfEATJY STATE PIDRAmLITY OF 'l'H~ PHOCKSS MEANS

~m 0 1 2 3 4 6 6

11"milO1 .. 22 .. 15 .. 08 • 03 • 01 .. 00

T.ABLK 8

S'l'EADY ::)TAT,t; ~ROBAmLIYi O,lt' 'l'llli OBoiiiliVATIOrJ:): .F~x)=l- F(x), Due to symmetry

x 0.0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

F(x) .5000 .5630 .6248 .6841 .7398 .7907 08359 .8747 .9070 .9329 .9530 .9681
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1 3 II 5 6 7 8 9 10

•

.................. ', , .. , .

••••••••••••• '" ••••••••••••••••••• 0 ••••••••••••••••••• 0 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

.. .. 000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 '.000 .000 .000 .000 ..000 .

........ .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .

......... 000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 ..

......... 000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .

........ .006 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .

........ .242 .061 .006 .000 .000 .000 .000 .000 .OCKJ .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 ..

.. . .. .. .. 242 .383 .242 .061 .006 .000 .000 .000 .000 ..000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .

....... .. 006 .061 .242 .383 .242 .061 .006 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .

.. ,.......000 .000 .006 .061 .242 .383 .242 .061 .006 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 ..

......... 000 .000 .000 .000 .006 .061 .241 .382 .241 .061 .006 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .

......... 009 .005 .001 .000 .000 .000 .006 .059 .236 .374 .236 .059 .006 .000 .000 .000 .000 .000 .000 .000 .000 .

. : 010 .038 .061 .038 .010 .001 .000 .000 .005 .051 .203 .122 .203 .051 .005 .000 .000 .000 .000 .000 .000 .

· 000 .003 .030 .121 .191 .121 .030 .003 .000 .000 .003 .030 .121 .191 .121 .030 .003 .000 .000 .000 .0~0 .

.... 000 .000 .000 .005 .OSl .203 .322 .203 .OSl .005 .000 .000 .001 .010 .038 .061 .038 .010 .001 .000 .000 ' .

· 000 .000 .000 .000 .000 .006, .05'9. .236, .374 .236 .059 .006 .000 .000 .000 .001 .005 .009 .005 .001 '. 000 .

........ ,000 :oof .000 .000 .000 .000 .000 .00f .060 .241 .382 .241 .060 .006 .000 .000 .000 .000 .000 .001 .000 .

........ .000 .001 .005 .009 .005 .001 .000 .000 .000 ..006 .059 .236 .374 .236 .059 .006 .000 .000 .000 .000 .000 .

....... .. 000 .000 .001 .010 .038 .061 .038 .010 .001 .000 .000 .005 .051 .203 .322 .203 .051 .005 .000 .000 .000 .: ..

.... . : 000 .000 .000 .000 .003 .030 .121 .191 .121 .030 .003 .000 .000 .003 .030 .121 .191 .121 .030 .003 .000 .

.... .000 .000 .000 .000 .000 .000 .005 .051 .203 .322 .203 .051 .005' .000 .000 .001 .010 .038 .061 .038 .010 .

....... .. 000 .000 .000 .000 .000 .000 .000 .000 .006 .059 .236 .374 .236 .059 .006 .000 .000 .000 .001 .005 .009 ..

......... 000 .000 .000 .000 .000 .000 .000.000 .000 .000 .006 .061 .241 .382 .141 .061 .006 .000 .000 .000 .000 .. : .

......... 000 .~ .000 .000 .000 .000 .000 .000 .000 .000 .qoo .000 .006 .061 .242 .383 .242 .061 .006 .000 .000 ..

......... 000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000.000 .006 .061 .242 .383 .242 .061 .006 .

........ .000 .000 .000 .000 .000 .000 .000 .000 .000";000 .000 .000 .000 .000 .000 .000 .006 .061 .242 .383 .242 .

.. 000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .006 .061 .242 .

· ' 000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .006 .

........ .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 :000 .000 .000 .000 .000 .000 .000 .000 .000 , .

· 000 '. 000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000: .000 .000 .000 .000 .000 .000 .

.... .000 .OCO .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 ,000 .000 .

......... 000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 '

••• 0 •• 0 0 •• 0 •••• 0 ••• 0 •• 0.0 ••••••••••• 0 0 ••••••••••••••••••••••••••••••••••••••

· .
•• 0 •••••• 0 .0 •• 0 •••••••••••••• 0 •••••• 0 0 •••••• 0 ••••••••••••••••••• 0 •• 0 •• 0 •••••••• .;.0 ••••••••••••••••••••••••••••••

TABlE 9
TRAHSITIOH PROBABILITY nATRIX
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